ASTRONOMICAL FORMULAE

 


 ASTRONOMICAL FORMULAE - [These are GREAT - no author! - S.H.]

 ---------------------


 MAGNIFICATION:  BY FIELDS

 M = Alpha/Theta


   where M is the magnification

         Alpha is the apparent field

         Theta is the true field


 Apparent Field:  the closest separation eye can see is 4', more practically

 8-25', 1-2' for good eyes.  The Zeta Ursae Majoris double (Mizar/Alcor) is

 11.75'; Epsilon Lyrae is 3'.


 True Field (in o) = 0.25 * time * cos of the declination

            (in ') = 15 * time * cos of the declination

            where time is the time to cross the ocular field in minutes


 A star therefore moves westward at the following rates:

      15o  /h (1.25o/5 min) at 0o declination

      13o  /h (1.08o/5 min) at 30o declination

       7.5o/h (0.63o/5 min) at 60o declination.



            <Press  Home  PgDn  PgUp  Down Arrow  End  Q=Print>

                                                                                

 MAGNIFICATION:  BY DIAMETER AND EXIT PUPIL

 M = D/d


   where M is the magnification

         D is the diameter of the objective

         d is the exit pupil (5-6 mm is best; 7 mm not produce a sharp outer

           image)


 The scotopic (dark-adapted) aperture of the human pupil is typically 6

 (theoretically 7, 5 if over age 50) mm.  Since the human pupil has a focal

 length of 17 mm, it is f/2.4 and yields 0.17 per mm of aperture.  2.5 mm is

 the photopic (light-adapted) diameter of the eye.



 DAWES LIMIT (SMALLEST RESOLVABLE ANGLE, RESOLVING POWER)

 Theta = 115.8/D


   where Theta is the smallest resolvable angle in "

         D is the diameter of the objective in mm


 Atmospheric conditions seldom permit Theta < 0.5".  The Dawes Limit is one-

 half the angular diameter of the Airy (diffraction) disc, so that the edge


            <Press  Home  PgDn  PgUp  Down Arrow  End  Q=Print>

                                                                                 of one disc does not extend beyond the center of the other).  The working

 value is two times the Dawes Limit (diameter of the Airy disc), so that the

 edges of the two stars are just touching.



 MAGNIFICATION NEEDED TO SPLIT A DOUBLE STAR


 M = 480/d


 where M is the magnification required

       480 is # of seconds of arc for an apparent field of 8 minutes of arc

       d is the angular separation of the double star


 About the closest star separation that the eye can distinguish is 4 minutes

 of arc (240 seconds of arc).  Twice this distance, or an 8-minute (480-

 second) apparent field angle, is a more practical value for comfortable

 viewing.  In cases where the comes is more than five magnitudes fainter

 than the primary, you will need a wider separation:  20 or 25 minutes of

 arc, nearly the width of the moon seen with the naked eye.



 RESOLUTION OF LUNAR FEATURES

 Resolution = (2*Dawes Limit*3476)/1800)


            <Press  Home  PgDn  PgUp  Down Arrow  End  Q=Print>

                                                                                 Dawes Limit * 38.8


 where Resolution is the smallest resolvable lunar feature in km

       2*Dawes Limit is the Airy disc (more practical working value: 2x this)

       1800 is the angular size of the moon in "

       3476 is the diameter of the moon in km



 APPARENT ANGULAR SIZE OF AN OBJECT

 Apparent Angular Size = (Linear Width / Distance) * 57.3


 where Apparent Angular Size of the object is expressed in degrees

       Linear Width is the linear width of the object in m

       Distance is the distance of the object in m


 A degree is the apparent size of an object whose distance is 57.3 x its

 diameter.



 SIZE OF IMAGE (CELESTIAL)

 h = (Theta*F)/K

 Theta = K*(h/F)

 F = (K*h)/Theta


            <Press  Home  PgDn  PgUp  Down Arrow  End  Q=Print>

                                                                                

 where h is the linear height in mm of the image at prime focus of an

           objective or a telephoto lens


       Theta is the object's angular height (angle of view) in units

           corresponding to K


       F is the effective focal length (focal length times Barlow

           magnification) in mm


       K is a constant with a value of 57.3 for Theta in degrees, 3438 in

           minutes of arc, 206265 for seconds of arc (the number of the

           respective units in a radian)


 The first formula yields image size of the sun and moon as approximately 1%

 of the effective focal length (Theta/K = 0.5/57.3 = 0.009).


 The second formula can be used to find the angle of view (Theta) for a

 given film frame size (h) and lens focal length (F).  Example:  the 24 mm

 height, 36 mm width, and 43 mm diagonal of 35-mm film yields an angle of

 view of 27o, 41o, and 49o for a 50-mm lens.


 The third formula can be used to find the effective focal length (F)


            <Press  Home  PgDn  PgUp  Down Arrow  End  Q=Print>

                                                                                 required for a given film frame size (h) and angle of view (Theta).



 SIZE OF IMAGE (TERRESTRIAL)

 h = (Linear Width / Distance) * F

 Linear Width = (Distance * h) / F

 Distance = (Linear Width * F) / h

 F = (Distance * h) / Linear Width


 where h is the linear height in mm of the image at prime focus of an

           objective or telephoto lens


        Linear Width is the linear width of the object in m

        Distance is the distance of the object in im

        F is the effective focal length (focal length times Barlow

           magnification) in mm



 (Star trails on film)


 The earth rotates 5' in 20 s, which yields a barely detectable star trail

 with an unguided 50-mm lens.  2-3' (8-12 s) is necessary for an

 undetectable trail, 1' (4 s) for an expert exposure.  Divide these values


            <Press  Home  PgDn  PgUp  Down Arrow  End  Q=Print>

                                                                                 by the proportional increase in focal length over a 50-mm lens.  For

 example, for 3' (12 s), a 150-mm lens would be 1/3 (1' and 4 s) and a 1000-

 mm lens would be 1/20 (0.15' and 0.6 s).  Note that to compensate for these

 values, the constant in the formula would be 1000 for a barely-detectable

 trail, 600 for an undetectable trail, and 200 for an expert exposure.


 N.B. The above formulae assume a declination of 0o.  For other declina-

 tions, multiply lengths and divide exposure times by the following cosines

 of the respective declination angles:  0.98 (10o), 0.93 (20o), 0.86 (30o),

 0.75 (40o), 0.64 (50o), 0.50 (60o), 0.34 (70o), 0.18 (80o), 0.10 (85o).



 SURFACE BRIGHTNESS OF AN EXTENDED OBJECT ("B" VALUE)

 B = 10^0.4(9.5-M)/D^2


 where B is the surface brightness of the (round) extended object

       M is the magnitude of the object (total brightness of the object),

         linearized in the formula

       D is the angular diameter of the object in seconds of arc (D^2 is

         the surface area of the object)



 EXPOSURE DURATION FOR POINT SOURCES


            <Press  Home  PgDn  PgUp  Down Arrow  End  Q=Print>

                                                                                 e = (10^0.4(M+13))/S*a^2


 where e is the exposure duration in seconds for an image size of >= 0.1 mm

       M is the magnitude of the object

       S if the film's ISO speed

       a is the aperture of the objective



 MISCELLANEOUS FORMULAE

 ----------------------


 HOUR ANGLE

 H = Theta - Delta


   where H is the hour angle

         Theta is sidereal time

         Delta is right ascension


   The Hour Angle is negative east of and positive west of the meridian (as

   right ascension increases eastward).



 BODE'S LAW


            <Press  Home  PgDn  PgUp  Down Arrow  End  Q=Print>

                                                                                 (4 + 3(2^n))/10 in AU at aphelion


 where n is the serial order of the planets from the sun (Mercury's 2n =1,

         Venus's n = 0, Earth's n = 1, asteroid belt = 3)



 ANGULAR SIZE

 Theta = (55*h)/d


 where Theta is the angular size of the object in degrees

       h is the linear size of the object in m

       d is the distance from the eye in m


 e.g., for the width of a quarter at arm's length:

         (55*0.254)/0.711 = 2o



 ESTIMATING ANGULAR DISTANCE


 Penny, 4 km distant .......................................  1"

 Sun, Moon ................................................. 30'

    (The Moon is approximately 400 times smaller in angular

    diameter than the Sun, but is approx 400 times closer)


            <Press  Home  PgDn  PgUp  Down Arrow  End  Q=Print>

                                                                                 Width of little finger at arm's length ....................  1o

 Dime at arm's length ......................................  1o

 Quarter at arm's length ...................................  2.5o

 Width of Orion's belt .....................................  3o

 Alpha Ursae Majoris (Dubhe) to Beta Ursae Majoris (Merak) .  5o

    (Height of Big Dipper's  "pointer stars" to Polaris.)

 Alpha Geminorum (Castor) to Beta Geminorum (Pollux) .......  5o

 Width of fist at arm's length ............................. 10o

 Alpha Ursae Majoris (Dubhe) to Delta Ursae Majoris (Megrez) 10o

    (Width of Big Dipper's "pointer stars".)

 Height of Orion ........................................... 16o

 Length of palm at arm's length ............................ 18o

 Width of thumb to little finger at arm's length ........... 20o

 Alpha Ursae Majoris (Dubhe) to Eta Ursae Majoris (Alkaid) . 25o

    (Length of Big Dipper.)

 Alpha Ursae Majoris (Dubhe) to Alpha Ursae Minoris

    (Polaris) .............................................  27o



 ESTIMATING MAGNITUDES


 Big Dipper, from cup to handle

    Alpha (Dubhe)     1.9


            <Press  Home  PgDn  PgUp  Down Arrow  End  Q=Print>

                                                                                    Beta (Merak)      2.4

    Gamma (Phecda)    2.5

    Delta (Megrez)    3.4

    Epsilon (Alioth)  1.7 (4.9)

    Zeta (Mizar)      2.4 (4.0)

    Eta (Alkaid)      1.9


 Little Dipper, from cup to handle

    Beta (Kochab)     2.2

    Gamma (Pherkad)   3.1

    Eta               5.0

    Zeta              5.1 (4.3)

    Epsilon           4.4

    Delta             4.4

    Alpha (Polaris)   2.1



 RANGE OF USEFUL MAGNIFICATION OF A TELESCOPE


 D = diameter of aperture in mm


 Minimum useful magnification .................... 0.13*D                                                  0.2*D for better contrast


            <Press  Home  PgDn  PgUp  Down Arrow  End  Q=Print>

                                                                                 Best visual acuity .............................. 0.25*D

 Wide views ...................................... 0.4*D

 Lowest power to see all detail (resolution of eye

    matches resolution of telescope) ............. 0.5*D

 Planets, Messier objects, general viewing ....... 0.8*D

 Normal high power, double stars ................. 1.2*D to 1.6*D

 Maximum useful magnification .................... 2.0*D

 Close doubles ................................... 2.35*D

 Sometimes useful for double stars ............... 4.0*D

 Limit imposed by atmospheric turbulance ......... 500



 GEOGRAPHIC DISTANCE


 Geographic distance of one second of arc = 30 m * cos of the latitude


     where cos(Latitude)=1 on lines of constant longitude




 ANGULAR SIZE UNITS

 1 degree = 60 arc minutes denoted 60'

 1 '      = 60 arc seconds denoted "


            <Press  Home  PgDn  PgUp  Down Arrow  End  Q=Print>

                                                                                 1 Radian = 57.2957795 deg

          = 3437.74677'

          = 206264.806"


 # of square degrees in a sphere = 41252.96124


 Ex

    Moon

         1800" = .5 deg = 30' = 3500 km = 2170 miles

         180 " = 350 km

         1.8 " = 35  km = 2.1 miles


              .

           .      .

                        A radian is defined such that the angle,T,produced

         .        c .   by setting the length of arc a = to the radius c

              .------   will subtend 1 radian or 57.3 degrees approximately.

              \ T   /

         .     \   /a

                \ /.

           .     \

              .  .



            <Press  Home  PgDn  PgUp  Down Arrow  End  Q=Print>

                                                                                

 ANNUAL PARALLAX


 Tan(pi) approx= pi = a/D  (by small angle equation)


 Where a = 1 AU or Astronomical Unit = 9.3E7 miles

       D = distance in parsecs


 The distance is therefore related to the parallax definition by:


   D = 1/pi


 The parallax is a measure of distance based on angular displacement of a

 star against much distant background stars over the course of a year's time

 as the earth circles the sun. (A similar affect is obtained by closing one

 eye, holding out a pencil vertically, and alternately closing and opening

 the opposing eyes. The pencil shifts relative to the background which in

 this case is the wall,window,woman, what have you. That is a parallactic

 effect, except the eyes take the place of a camera taking pictures when the

 earth is at opposite ends of its orbit.


 The parsec or PARallax-SECond is defined in terms of the parallax: The

 parsec is the distance a star has to be such that the Earth's motion around


            <Press  Home  PgDn  PgUp  Down Arrow  End  Q=Print>

                                                                                 the sun would cause the star to shift in the sky by one arc second through

 the course of one year. The parsec is 3.26 light years in measure and is

 obtained by conversion of light years or by taking 1/parallax value.



 STELLAR DISTANCES



 D(pc) = 10^(1+.2(m-M)) or rewritten as


   m = M + 5*Log(D) - 5


 Where as usual:


   D = distance in parsecs. Obtained by taking 1/parallax.

   m = apparent magnitude

   M = absolute magnitude


 m-M = distance modulus



 SPECTRAL CLASS FEATURES



            <Press  Home  PgDn  PgUp  Down Arrow  End  Q=Print>

                                                                                 Spectral

 Class     Special features

 ---------------------------------------------------------------------

 O         HeII lines visible; lines from highly ionized species, for

           example, CIII, NIII, OIII, SiIV ; H lines relatively weak;

           strong ultraviolet continuum.


 B         HeI lines strong; attain maxmimum at B2; HeII lines absent;

           H lines stronger; lower ions, for example, CII, OII, SiIII


 A         H lines attain maxmimum strength at A0 and decrease toward later

           types; MgII, SiII strong; CaII weak and increasing in strength


 F         H weaker, CaII stronger; lines of neutral atoms and first ions

           of metals appear prominently


 G         Solar-type spectra; CaII lines extremely stron; neutral metals

           prominent, ions weaker; G band (CH) strong; H lines weakening


 K         Neutral metallic lines dominate; H quite weak; molecular bands

           (CH,CN) developing; continuum weak in blue


 M         Strong molecular bands, particularly TiO; some neutral lines for


            <Press  Home  PgDn  PgUp  Down Arrow  End  Q=Print>

                                                                                           example, CaI quite strong; red continua


 C(R,N)    Carbon stars; strong bands of carbon compounds C  ,CN,CO;

           TiO absent; temperatures in range of 2 classes K and M


 S         Heavy-element stars; bands of ZrO, YO, LaO; neutral atoms strong

           as in classes K and M; overlaps these classes in temperature range



 Ia-0      Most extreme supergiants

 Ia        Luminous supergiants

 Iab       Moderate supergiants

 Ib        Less luminous supergiants

 II        Bright giants

 III       Normal giants

 IV        Subgiants

 V         Dwarfs (main sequence)

 VI        Subdwarf (below main sequence, extreme metal poor. )

 VII       White dwarfs



 COMPLETE DATA FOR THE BRIGHTEST STARS



            <Press  Home  PgDn  PgUp  Down Arrow  End  Q=Print>

                                                                                                                          Sp

 Star  Name        RA     Dec     m     M    Cl    Lum    Rad   M   Ly   Tms

                   h m    d  m                     *Lo    *Ro  *Mo       E6yr


 a And Alpheratz  00 07  +28 58  2.06  -0.1  B9p   93     3.1  5.0  90   500

 a Ari Hamal      02 06  +23 22  2.00  +0.2  K2III 103    17   5.1  76   500

 a UMi Polaris    02 12  +89 11  1.99  -4.6  F8Ib  1600   80   10   680  62

 b Per Algol      03 07  +40 52  2.06  -0.5  B8V   132    3.2  4.5  105  340

 a Per Mirfak     03 23  +49 47  1.8   -4.4  F5Ib  4800   55   14   570  29

 n Tau Alcyone    03 46  +24 03  2.9   -3.2  B7III 1800   8.5  10.5 410  58

 a Tau Aldeberan  04 35  +16 28  0.86  -1.2  K5III 150    4.5  4.5  68   300

 b Ori Rigel      05 14  -08 13  0.14  -7.1  B8Ia  150000 80   42   900  3

 a Aur Capella    05 15  +45 59  0.05  -0.6  G8III 75     1.2  3.8  45   500

 y Ori Bellatrix  05 24  +06 20  1.64  -4.2  B2III 4000   6.5  14   470  3.5

 a Ori Betelgeuse 05 54  +07 24  0.41  -5.6  M2Ia  13000  800  8.1  520  6.2

 a Car Canopus    06 24  -52 41 -0.72  -3.1  F0Ib  800    40   3.2  98   40

 a CMa Sirius     06 44  -16 42 -1.47   1.45 A1V   23     2.3  2.7  8.6  1174

 a Gem Castor     07 33  +31 56  1.97   1.3  A1V   28     2.3  2.8  45   1000

 a CMi Procyon    07 38  +05 17  0.37   2.7  F5IV  7.6    2    1.8  11.3 2370

 b Gem Pollux     07 44  +28 05  1.16   1.0  K0III 30     16   2.9  35   950

 a Hyd Alphard    09 26  -08 35  1.98  -0.3  K4III 114    162  4.4  94   385

 a Leo Regulus    10 07  +12 04  1.36  -0.7  B7V   140    3    4.7  84   335

 a UMa Dubhe      11 03  +61 52  1.81  -0.7  K0III 140    *    4.7  105  335


            <Press  Home  PgDn  PgUp  Down Arrow  End  Q=Print>

                                                                                 b Leo Denebola   11 48  +14 41  2.14   1.5  A3V   21     *    2.6  42   1238

 a CVn CorCaroli  12 55  +38 26  2.90   0.1  B9p   77     3.6  3.9  118  500

 a Vir Spica      13 24  -11 03  0.91  -3.3  B1V   1700   3    10.3 220  60

 a Boo Arcturus   14 15  +19 17 -0.06  -0.3  K2III 100    20   4.2  36   420

 a Cen Rigil Kent 14 38  -60 46  0.01   4.4  G2V   1.3    1    1.1  4.3  8500

 a CrB Alphecca   15 34  +26 47  2.23   0.4  A0V   120    3.6  4.5  76   375

 a Sco Antares    16 28  -26 23  0.92  -5.1  M1Ib  9000   800  17.2 520  19

 a Her RasAlgethi 17 14  +14 24  3.10  -2.3  M5II  700    800  7.9  410  112

 a Oph Rasalhague 17 34  +12 35  2.09   0.8  A5III 29     6.4  2.8  60   965

 a Lyr Vega       18 36  +38 46  0.04   0.5  A0V   50     2.5  3.4  27   680

 b Cyg Albireo    19 30  +27 55  3.07  -2.4  K3II  800    59   8.1  410  100

 a Aql Altair     19 50  +08 49  0.77   2.2  A7IV  9.8    1.5  2    16.5 2000

 a Cyg Deneb      20 41  +45 12  1.26  -7.1  A2Ia  100000 40   37   1600 3.7

 a Cep Alderamin  21 18  +62 31  2.44   1.4  A7IV  330    9.5  6.1  52   184

 e Peg Emif       21 43  +09 48  2.38  -4.6  K2Ib  5900   140  15.1 780  25

 a PsA Fomalhaut  22 57  -29 44  1.15   2.0  A3V   12     2    2.2  22.6 1830


 NOTE: A '*' means no data available at this time

R

            <Press  Home  PgDn  PgUp  Down Arrow  End  Q=Print>


Comments

Popular posts from this blog

BOTTOM LIVE script

Evidence supporting quantum information processing in animals

ARMIES OF CHAOS