Quantum Fluctuations of Empty Space : A New Rosetta Stone of Physics?

  


            (word processor parameters LM=1, RM=70, TM=2, BM=2)


                  Taken from KeelyNet BBS (214) 324-3501

                       Sponsored by Vangard Sciences

                                PO BOX 1031

                            Mesquite, TX 75150


                              April 10, 1990


             This paper was written and courteously shared by

                         Dr. H. E. Puthoff of the

                      Institute for Advanced Studies,

               1301 Capital Of Texas Highway S., Suite B 121

                          Austin, Texas 78746

                              (512) 328-5751


                   Quantum Fluctuations of Empty Space :

                      A New Rosetta Stone of Physics?


    In a recent  article  in the popular press (The Economist, January

    7, 1989, pp. 71-74) it was noted  how  many  of this century's new

    technologies depend on the Alice-in-Wonderland physics  of quantum

    mechanics, with all of its seeming absurdities.


    For starters, one  begins  with  the  observation  that  classical

    physics tells us that atoms, which  can  be likened to a miniature

    solar system with electron planets orbiting a nuclear  sun, should

    not exist.


    The circling electrons  should  radiate  away  their  energy  like

    microscopic radio antennas and spiral into the nucleus.  But atoms

    do exist, and multitudinous other  phenomena  which don't obey the

    rules do occur.


    To resolve this cognitive dissonance physicists introduced quantum

    mechanics, which is  essentially  a set of mathematical  rules  to

    describe what in  fact  does  happen.   But  when  we  re-ask  the

    question, "why didn't the electron  radiate  away its energy?" the

    answer is, basically, "well, in quantum theory it doesn't."


    It's at this  point that not only the layman but  some  physicists

    can begin to  feel  that  someone's  not playing fair.  I say only

    some physicists because the majority  of  working  physicists  are

    content simply to use quantum rules that work, that  describe  (if

    only statistically) what  will  happen in a given experiment under

    certain conditions.


    These are the   so-called  "logical   positivists"   who,   in   a

    philosophical sense, are  like  the  news  reporter   whose   only

    interest is the bottom line.


    There are nevertheless  individuals  here and there who still want

    to know why the electron didn't radiate,  why Einstein's equations

    are in this form and not another, where does the  ubiquitous zero-

    point energy that  fills  even  empty space come from, why quantum

    theory, and perhaps the biggest  question  of  all,  how  did  the

    universe get started anyway?



                                  Page 1

    Surprisingly enough, there  may  be  answers  to  these  seemingly

    unanswerable meta-level questions.   Perhaps even more surprising,

    they seem to  be  emerging, as a recent book title  put  it,  from

    "Something called Nothing"  (1), or to put it more correctly, from

    empty space, the vacuum, the void.


    To comprehend the significance of  this statement, we will have to

    take a detour  into  the  phenomenon  of fluctuations  with  which

    quantum theory abounds,  including  the fluctuations of empy space

    itself.


    Before the advent  of  quantum theory,  physics  taught  that  any

    simple oscillator such   as  a  pendulum,  when   excited,   would

    eventually come to  rest  if  not  continuously  energized by some

    outside force such  as a spring.   This  is  because  of  friction

    losses in the system.


    After it was recognized that quantum theory was  a  more  accurate

    representation of nature,  one  of  the findings of quantum theory

    was that such an oscillator would  in  fact not come to total rest

    but rather would continue to "jiggle" randomly about  its  resting

    point with a  small amount of energy always present, the so-called

    "zero-point energy."


    Although it may not be observable  to  the eye on your grandfather

    clock because it is so minute, it is nonetheless very real, and in

    many physical systems has important consequences.


    One example is the presence of a certain amount  of  "noise"  in a

    microwave receiver that  can never be gotten rid of, no matter how

    perfect the technology.  This is  an  example which shows that not

    only physical devices  such  as  pendulums have this  property  of

    incessant fluctuation, but  also  fields,  such as electromagnetic

    fields (radio waves, microwaves, light, X-rays, etc.).


    As it turns  out,  even  though   the  zero-point  energy  in  any

    particular mode of an electromagnetic field is minute,  there  are

    so many possible modes of propagation (frequencies, directions) in

    open space, the  zero-point  energy  summed  up  over all possible

    modes is quite  enormous;  in fact,  greater  than,  for  example,

    nuclear energy densities.   And  this in all of so-called  "empty"

    space around us.   Let  us  concentrate  on  the  effects  of such

    electromagnetic zero-point fluctuations.


    With such large  values,  it  might   seem  that  the  effects  of

    electromagnetic zero-point energy  should  be quite  obvious,  but

    this is not the case because of its extremely uniform density.


    Just as a  vase  standing  in  a  room  is not likely to fall over

    spontaneously, so a  vase bombarded  uniformly  on  all  sides  by

    millions of ping pong balls would not do likewise  because  of the

    balanced conditions of the uniform bombardment.


    The only evidence  of  such  a barrage might be minute jiggling of

    the vase, and similar mechanisms are thought to be involved in the

    quantum jiggle of zero-point motion.


    However, there are certain conditions  in  which the uniformity of

    the background electromagnetic  zero-point  energy   is   slightly

    disturbed and leads to physical effects.


                                  Page 2

    One is the  slight perturbation of the lines seen from transitions

    between atomic states known as the Lamb Shift (2), named after its

    discoverer, Willis Lamb.


    Another, also named for its discoverer,  is  the Casimir Effect, a

    unique attractive quantum   force  between  closely-spaced   metal

    plates.


    An elegant analysis  by  Milonni  et.  al. at Los Angeles National

    Laboratory (3) shows the Casimir  force  to  be  due  to radiation

    pressure from the  background  electromagnetic  zero-point  energy

    which has become unbalanced due to the presence of the plates, and

    which results in the plates being pushed together.


    From this it  would  seem  that  it  might  be possible to extract

    electrical energy from the vacuum,  and  indeed the possibility of

    doing so (at least in principle) has been shown in a paper of that

    same name by Robert Forward (4) at Hughes Research Laboratories in

    Malibu, California.


    What does this have to do with our basic questions?   Let's  start

    with the question  as  top  why  the electron in a simple hydrogen

    atom doesn't radiate as it circles the proton in its stable ground

    state atomic orbit.


    This issue has been re-addressed  in a recent paper by the author,

    this time taking into account what has been learned over the years

    about the effects  of zero-point energy. (5)  There  it  is  shown

    that the electron  can  be  seen as continually radiating away its

    energy as predicted  by  classical   theory,   but  simultaneously

    absorbing a compensating  amount  of energy from the  ever-present

    sea of zero-point  energy  in  which the atomm is immersed, and an

    assumed equilibrium between  these  two  processes  leads  to  the

    correct values for the parameters known to define the ground-state

    orbit.


    Thus the ground-state  orbit  is set by a dynamic  equilibrium  in

    which collapse of  the  state  is prevented by the presence of the

    zero-point energy.  The significance  of  this observation is that

    the very stability  of  matter  itself appears to  depend  on  the

    presence of the   underlying  sea  of  electromagnetic  zero-point

    energy.


    With regard to the gravitational  attraction  that is described so

    well by Einstein's  theory, its fundamental nature  is  still  not

    well understood.  Whether  addressed  simply  in terms of Newton's

    Law, or with the full rigor of general  relativity,  gravitational

    theory is basically descriptive in nature, without  revealing  the

    underlying dynamics for that description.


    As a result,  attempts  to  unify  gravity  with  the other forces

    (electromagnetic, strong and weak  nuclear forces) or to develop a

    quantum theory of  gravity  have  foundered  again  and  again  on

    difficulties that can be traced back to a lack of understanding at

    a fundamental level.


    To rectify these   difficulties,   theorists  by  and  large  have

    resorted to ever-increasing levels  of mathematical sophistication

    and abstraction, as in the recent development of  supergravity and

    superstring theories.


                                  Page 3

    Taking a completely   different   tack   when   addressing   these

    difficulties in the  sixties,  the  well-known  Russian  physicist

    Andrei Sakharov put forward the somewhat radical  hypothesis  that

    gravitation might not  be  a  fundamental  interaction at all, but

    rather a secondary or residual effect  associated with other (non-

    gravitational) fields. (6)


    Specifically, Sakharov suggested that gravity might  be an induced

    effect brought about  by  changes  in the zero-point energy of the

    vacuum, due to the presence of matter.


    If correct, gravity would then be understood as a variation on the

    Casimir theme, in  which  background  zero-point-energy  pressures

    were again responsible.


    Although Sakharov did not develop the concept much further, he did

    outline certain criteria such a theory would have  to meet such as

    predicting the value  of  the gravitational constant G in terms of

    zero-point-energy parameters.


    The approach to gravity outlined  by  Sakharov  has  recently been

    addressed in detail,  and  with  positive  reults,  again  by  the

    author. (7)


    The gravitational interaction is shown to begin with the fact that

    a particle situated  in  the  sea  of  electromagnetic  zero-point

    fluctuations develops a "jitter"  motion,  or ZITTERBEWEGUNG as it

    is called.


    When there are two or more particles they are each  influenced not

    only by the  fluctuating  background field, but also by the fields

    generated by the  other  particles,   all   similarly   undergoing

    ZITTERBEWEGUNG motion, and  the  inter-particle  coupling  due  to

    these fields results in the attractive gravitational force.


    Gravity can thus  be  understood  as  a kind of long-range Casimir

    force.  Because of its electromagnetic  unerpinning, gravitational

    theory in this form constitutes what is known in the literature as

    an "already-unified" theory.


    The major benefit of the new approach is that it  provides a basis

    for understanding various  characteristics  of  the  gravitational

    interaction hitherto unexplained.


    These include the relative weakness  of  the  gravitational  force

    under ordinary circumstances (shown to be due to the fact that the

    coupling constant G depends inversely on the large  value  of  the

    high-frequency cutoff of the zero-point-fluctuation spectrum); the

    existence of positive  but  not  negative  mass  (traceable  to  a

    positive-only kinetic-energy basis  for  the  mass parameter); and

    the fact that  gravity  cannot be shielded (a consequence  of  the

    fact that quantum zero-point-fluctuation "noise" in general cannot

    be shielded, a  factor  which in other contexts sets a lower limit

    on the detectability of electromagnetic signals).


    As to where the ubiquitous electromagnetic zero-point energy comes

    from, historically there  have   been   two  schools  of  thought:

    existence by fiat  as  part  of  the  boundary conditions  of  the

    universe, or generation  by  the  (quantum-fluctuation)  motion of

    charged particles that constitute matter.


                                  Page 4

    A straightforward calculation   of   the  latter  possibility  has

    recently been carried out by the author. (8)


    It was assumed that zero-point fields  drive  particle motion, and

    that the sum of particle motions throughout the universe  in  turn

    generate the zero-point fields, in the form of a self-regenerating

    cosmological feedback cycle not unlike a cat chasing its own tail.


    This self-constistent approach  yielded the known zero-point field

    distribution, thus indicating a dynamic-generation process for the

    zero-point fields.


    Now as to the question of why quantum  theory.  Although knowledge

    of zero-point fields emerged from quantum physics  as that subject

    matured, Professor Timothy  Boyer at City College in New York took

    a contrary view.


    He bagan asking in the late sixties  what  would happen if we took

    classical physics as it was and introduced a background of random,

    classical fluctuating fields    of    the   zero-point    spectral

    distribution type.  Could  such  an  all-classical model reproduce

    quantum theory in its entirety,  and  might  this possibility have

    been overlooked by  the founders of quantum theory  who  were  not

    aware of the existence of such a fluctuating background field?


    (First, it is  clear  from  the  previously-mentioned cosmological

    calculation that such a field distribution  would reproduce itself

    on a continuing dynamic basis.)


    Boyer began by tackling the problems that led to  the introduction

    of quantum theory  in  the  first  place,  such  as  the blackbody

    radiation curve and the photoelectric  effect.   One  by  one  the

    known quantum results were reproduced by this upstart neoclassical

    approach, now generally referred to as Stochastic  Electrodynamics

    (SED) (9), as contrasted to quantum electrodynamics (QED).


    Indeed, Milonni at  Los Alamos noted in a review of the Boyer work

    that had physicists in 1900 thought  of  taking  this  route, they

    would probably have  been  more  comfortable with  this  classical

    approach than with Planck's hypothesis of the quantum, and one can

    only speculate as  to  the direction that physics would have taken

    then.


    The list of   topics  successfully   analyzed   within   the   SED

    formulation (i.e., yielding  precise quantitative  agreement  with

    QED treatments) has  now  been  extended  to  include the harmonic

    oscillator, Casimir and  Van der  Waals  forces  and  the  thermal

    effects of acceleration through the vacuum, to name a few.


    Out of this  work  emerged the reasons for such phenomena  as  the

    uncertainty principle, the   incessant   fluctuation  of  particle

    motion, the existence  of  Van  der  Waals  forces  even  at  zero

    temperature, and so forth, all shown to be due to the influence of

    the unceasing activity of the random background fields.


    There are also some notable failures in SED, such  as  transparent

    derivation of something as simple as Schrodinger's equation, which

    turns out as yet to be an intractable problem.


    Therefore, it is unlikely that quantum theory as we have come to


                                  Page 5

    know it and  love  it  will  be entirely replaced by a refurbished

    classical theory in the near future.


    Nonetheless, the successes to date  of  the  SED  approach, by its

    highlighting of  the  role  of background zero-point-fluctuations,

    means that when  the  final  chapter is written on quantum theory,

    field fluctuations in empty space  will  be  accorded  an  honored

    position.


    And now to the preeminent question of all, where  did the Universe

    come from?  Or,  in modern terminology, what started the Big Bang?

    Could quantum fluctuations of empty  space  have  something  to do

    with this also?


    Well, Prof. Edward Tryon of Hunter College of the  City University

    of New York  thought so when he proposed in 1973 that our Universe

    may have originated as a fluctuation  of  the  vacuum  on  a large

    scale, as "simply one of those things which happen  from  time  to

    time." (10)


    This idea was  later  refined  and  updated  within the context of

    inflationary cosmology by Alexander  Vilenkin of Tufts University,

    who proposed that  the  universe  is created by quantum  tunneling

    from literally nothing  into  the  something we call our universe.

    (11)


    Although highly speculative, these  types  of models indicate once

    again that physicists find themselves turning again  and  again to

    the Void (and the fluctuations thereof) for their answers.


    Those with a  practical bent of mind may be left with yet one more

    unanswered question.  Can this emerging  Rosetta  Stone of physics

    be used to translate such lofty insights into mundane application?


    Could the engineer   of   the   future   specialize   in   "vacuum

    engineering?"  Could the energy crisis be solved by harnessing the

    energies of the zero-point sea?


    After all, since the basic zero-point energy form is highly random

    in nature, and  tending  towards self-cancellation, if a way could

    be found to bring order out of chaos,  the,  because of the highly

    energetic nature of  the  vacuum  fluctuations,  relatively  large

    effects could in principle be produced.


    Given our relative ignorance at this point, we must fall back on a

    quote given by Podolny (12) when contemplating this same issue.


    "It would be  just  as  presumptuous  to  deny  the feasibility of

    useful application as it would be  irresponsible to guarantee such

    application."


    Only the future can reveal the ultimate use to which  Mankind will

    put this remaining  Fire  of the Gods, the quantum fluctuations of

    empty space.








                                  Page 6



                                REFERENCES


     1.  R.  Podolny,  "Something  Called Nothing" (Mir Publ., Moscow,

                      1986)


     2.  W. E. Lamb, Jr., and R. C. Retherford, "Fine Structure of the

                      Hydrogen Atom by a Microwave Method," Phys. Rev.

                      72, 241 (1947)


     3.  P.  W.  Milonni, R. J. Cook  and  M.  E.  Goggin,  "Radiation

                      Pressure from    the    Vacuum     :    Physical

                      Interpretation of the Casimir Force," Phys. Rev.

                      A 38, 1621 (1988)


     4.  R.  L. Forward, "Extracting Electrical Energy from the Vacuum

                      by Cohesion  of  Charged  Foliated  Conductors,"

                      Phys.  Rev.  B 30, 1700 (1984)


     5.  H.  E.  Puthoff, "Ground State of Hydrogen  as  a  Zero-Point

                      Fluctuation-Determined State,"  Phys. Rev. D 35,

                      3266 (1987)

         See also science news article, "Why Atoms Don't Collapse," in

                      New Scientist, p. 26 (9 July 1987)


     6.  A. D. Sakharov, "Vacuum Quantum  Fluctuations in Curved Space

                      and the Theory of Gravitation, Dokl. Akad. Nauk.

                      SSSR (Sov.  Phys.  - Dokl. 12, 1040 (1968).

        See also discussion in C. W. Misner, K. S. Thorne  and  J.  A.

                      Wheeler, Gravitation  (Freeman,  San  Francisco,

                      1973), p.  426


     7.  H. E. Puthoff, "Gravity as a  Zero-Point  Fluctuation Force,"

                      Phys. Rev. A 39, 2333 (1989)


     8.  H.  E. Puthoff, "Source of Vacuum Electromagnetic  Zero-Point

                      Energy," subm. to Phys. Rev. A, (March 1989)


     9.  See  review  of  SED  by  T.  H.  Boyer,  "A  Brief Survey of

                      Stochastic Electrodynamics,"  in  Foundations of

                      Radiation  Theory  and  Quantum Electrodynamics,

                      edited by A.  O.  Barut (Plenum, New York, 1980)

         See also the very readable account "The Classical Vacuum," in

                      Scientific American, p. 70 (August 1985)


    10.  E. P.  Tryon,  "Is the Universe a Vacuum Fluctuation?" Nature

                      246, 396 (1973)


    11.  A. Vilenkin,  "Creation of  Universes  from  Nothing,"  Phys.

                      Lett. 117B, 25 (1982)


    12.  R. Podolny, Ref. 1, p. 211


     We of Vangard Sciences wish to express our thanks  to Dr. Puthoff

     for allowing  us to list his excellent paper on Zero Point Energy

       on the KeelyNet.  If you have  questions  or  comments, you may

                        address them to KeelyNet or

         directly to Dr. Puthoff at the address on the title page.

                       Thank you for using KeelyNet!


                                  Page 7

Comments

Popular posts from this blog

BOTTOM LIVE script

Fawlty Towers script for "A Touch of Class"